

KNOWLEDGE ON CAMEL MILK GENOMICS: STATE OF ART AND PERSPECTIVES

Elena Ciani University of Bari – Italy elena.ciani@uniba.it

15 November 2021 – Montpellier

...some tools are more innovative and disruptive than others...

'Give me a lever ... and I shall move the world.'

Archimedes

CamDro3

Organism name: Camelus dromedarius (Arabian camel) Breed: African Infraspecific name: Isolate: Drom800 Sex: female SAMN03252735 BioSample: BioProject: PRJNA269274 Submitter: Vetmeduni Vienna Date: 2019/10/07 Assembly level: Chromosome Genome representation: full RefSeg category: representative genome GenBank assembly accession: GCA 000803125.3 (latest) RefSeq assembly accession: GCF 000803125.2 (latest) RefSeq assembly and GenBank assembly identical: no (hide details)

- Only in RefSeq: chromosome MT (in non-nuclear assembly-unit)
- Data displayed for RefSeq version

WGS Project: JWIN03

Assembly method: ABySS v. 1.3.6; HiRise v. MAY-2017; PBJelly v. 15.8.24; Pilon v. 1.22; ABySS Sealer v. 2.0.2; HiRise v. MAY-2018; PBJelly v. 15.8.24; BBMAP-CallVariants v. 38.12; ABySS Sealer v. 2.1.0

Expected final version: yes

Genome coverage: 65.0x

Camelus dromedarius REFERENCE GENOME

The Genome Sequence is not THE answer!

http://jcraigventersciencefoundation.com/resources/sequenced_genomes/genome_guide_index.shtml

CamDro3 is **ANNOTATED** (gene positions, sequence & structure are known)

CamDro3 sequence is now organized into CHROMOSOMES

DE NOVO ASSEMBLY

BEFORE: Scaffold level

Camelus dromedarius

REFERENCE GENOME

Genome

CamDro3 is a **TRESURE TROVE** of information

Historical effective population size

Further data mining?

COMPARATIVE GENOMICS

Comparative Genomics, Evolutionary and Gene Regulatory Regions Analysis of Casein Gene Family in *Bubalus bubalis*

📓 Saif ur Rehman^ai, 📃 Tong Feng^ai, 🛐 Siwen Wui, 🤵 Xier Luoi, 📃 An Lei², 🔝 Basang Luobu³, 🤱 Faiz-ul Hassan^{ar} and 🛔 Oingyou Liu^a

Check for updates

- Istate Key Laboratory for Conservation and Uslization of Subtropical Agro-Bioresources, Guangzi University, Namning, China
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of
- Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Shannan Animal Husbandry and Veterinary Terminus, Xizang, China
- Shannan Animal Husbandry and Veterinary Terminus, Xizang, China
- Shannan Animal Husbandry and Veterinary Terminus, Xizang, China
- Shannan Animal Husbandry and Veterinary Terminus, Xizang, China
- Shannan Animal Husbandry and Veterinary Terminus, Xizang, China
- Shannan Animal Husbandry and Veterinary Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Animal Husbandry and Stermany Terminus, Xizang, China
- Shannan Anima - Shannan - Shan

⁴Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan

Comparative & structural genomics *In silico* protein properties prediction *In silico* transcription factor prediction

Α	Phylogenetic Relationship	B <u>Gene Structure</u>		С	Motif Pattern	D	Conserved Domain
	Phylogenetic RelationshipBos indicus CSN2Bos indicusxBos taurus CSN2Bos taurus CSN2Bos taurus CSN2Swamp Buffalo CSN2Mediterranean Buffalo CSN2Bos taurus CSN3Bos indicus CSN3Bos indicusxBos taurus CSN3Bos indicusxBos taurus CSN3Bos indicusxBos taurus CSN3Mediterranean Buffalo CSN3Mediterranean Buffalo CSN3Murrah Buffalo CSN3Mediterranean Buffalo CSN3Murrah Buffalo CSN3Mediterranean Buffalo CSN1S1Swamp Buffalo CSN1S1Bos indicusxBos taurus CSN1S1Bos indicusxBos taurus CSN1S1Bos indicusxBos taurus CSN1S1Bos indicusxBos taurus CSN1S2Murrah Buffalo CSN1S2Swamp Buffalo CSN1S2Bos indicus CSN1S2Bos indicus CSN1S2Bos indicus CSN1S2Bos indicusxBos taurus CSN1S2	B Gene Structure	Exon Intron – UTR Upstream/ Downstream Motif 1 Motif 2 Motif 4 Motif 5 Motif 6 Motif 6 Motif 7 Motif 8 Motif 9 Motif 10	c	Motif Pattern		Conserved Domain
		0 2K 4K 6K 8K 10K 12K 14K 16K 18K 20K	(22K 24K 26K 28K 30K 32K 3	4K 36K	0 25 50 75 100 125 150 175 200 225 25	50 0	100 200 300 400 500

RE-SEQUENCING & POLYMORPHISM DETECTION

Reference

NOT ONLY SNPs (Single Nucleotide Polymorphisms), also structural variations, including CNVs (Copy Number Variations)

RE-SEQUENCING & POLYMORPHISM DETECTION

Targeted	Untargeted
Resequencing of specific genes or regions	Whole-genome (WG) resequencing
(also in a genome-wide fashion, e.g. SPET)	Randomly skimmed WG resequencing (eg. RAD & DDRAD sequencing)

RE-SEQUENCING & POLYMORPHISM DETECTION

COLLABORATION AMONG UNIBA, VETMEDUNI, IGA: 50K SNP LOCI FROM >100 DROMEDARIES FROM 18 COUNTRIES

(MORE ADVANCED) EVOLUTIONARY & COMPARATIVE/STRUCTURAL GENOMICS

(MORE ADVANCED) EVOLUTIONARY & COMPARATIVE/STRUCTURAL GENOMICS

ARTICLE

https://doi.org/10.1038/s42003-019-0734-6 OPEN

Whole-genome sequencing of 128 camels across Asia reveals origin and migration of domestic Bactrian camels

Liang Ming et al.#

Qiulin Yao², Badr M. Al-Shomrani³, Dong Zhang¹, Jiang Li², Manee M. Manee³, Zili Yang¹, Linfeng Yang², Yiyi Liu¹, Jilin Zhang², Musaad A. Altammami³, Shenyuan Wang¹, Lili Yu², Wenbin Zhang⁴, Sanyang Liu², La Ba⁴, Chunxia Liu¹, Xukui Yang², Fanhua Meng¹, Shaowei Wang², Lu Li¹, Erli Li², Xueqiong Li¹, Kaifeng Wu¹, Shu Zhang², Junyi Wang^{2,*}, Ye Yin², Huanming Yang², Abdulaziz M. Al-Swailem³ & Jun Wang^{2,5,6}

Comparative approach

TARGETED GENE RE-SEQUENCING

Structural organization of the casein cluster

Table 2. Summary of organization of CSN cluster in C. dromedarius as adopted from Pauciullo et al. [22].

Gene	Position	Size (bp) (A)	Intergenic Distance (bp) (B)	Total Size (bp) (A+B)	Exons
CSN1S1	242,112 to 258,587	16,476		16,476	20
CSN2	265,187 to 273,094	7908	6600 ($CSN1S1 \rightarrow CSN2$)	14,508	9
CSN1S2	321,355 to 335,898	14,544	48,261 ($CSN2 \rightarrow CSN1S2$)	62,805	17
CSN3	421,597 to 430,955	9359	85,699 ($CSN1S2 \rightarrow CSN3$)	95,058	5
Total		48,287		188,847	51

PREDICTION OF (FUNCTIONAL) EFFECT OF POLYMORPHISMS

(a first step toward connecting genetic variation with phenotipic variation)

Gene	Variant Type	Impact	Total Variants
	Intron variant	Modifier	76
	Missense variant	Moderate	2
CSN1S1	Splice region variant & intron variant	Low	1
	Synonymous variant	Low	1
	Upstream gene variant	Modifier	5
	3 prime UTR variant ¹	Modifier	1
	5 prime UTR variant ²	Modifier	1
COMICO	Intron variant	Modifier	34
CSN152	Splice acceptor variant & splice region variant & intron variant	High	1
	Splice region variant & intron variant	Low	2
	Upstream gene variant	Modifier	3
	Downstream gene variant	Modifier	45
	Intron variant	Modifier	37
CSN2	Splice region variant & intron variant	Low	1
	Synonymous variant	Low	1
	Upstream gene variant	Modifier	7
	5 prime UTR variant ²	Modifier	1
CSN3	Intron variant	Modifier	66
	Upstream gene variant	Modifier	9

Table 3. Summary of total number of variants identified in the casein gene cluster.

¹ 3' UTR is the portion of an mRNA from the 3' end of the mRNA to the position of the last codon used in translation. ² 5' UTR is the portion of an mRNA from the 5' end to the position of the first codon used in translation.

FROM (1st time) SNP DETECTION TO ROUTINE GENOTYPING

FROM TENS OF SEQUENCED ANIMALS TO HUNDREDS/THOUSANDS OF GENOTYPED ANIMALS

Figure 1. Distribution of genotyped animals per year of birth from 1990 to 2018. (a) Holsteins; (b) Jerseys.

A total of 205,755 and 89,238 pedigreed and **genotyped** animals born between 1990 and 2018 were available for Holsteins and Jerseys, respectively.

Makanjuola et al., 2020

INBREEDING ASSESSMENT

J. Dairy Sci. 103:5183–5199 https://doi.org/10.3168/jds.2019-18013

© 2020, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations

Bayode O. Makanjuola,¹ Filippo Miglior,^{1,2} Emhimad A. Abdalla,¹ Christian Maltecca,^{1,3} Flavio S. Schenkel,¹ and Christine F. Baes^{1,4} ¹Centre for Genomic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1 Canada ²Ontario Genomics, ON, M5G 1M1 Canada ³Department of Animal Science and Genetics Program, North Carolina State University, Raleigh 27607 ⁴Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland

Table 2. Within-breed averages of pedigree inbreeding (F_{PED}) , genomic inbreeding $(F_{ROH_SNP1101}, F_{ROH_PLINK}, F_{GRM})$, pedigree coancestry (f_{PED}) , and genomic coancestry (f_{SEG}) coefficients for genotyped animals born between 1990 and 2018

	Inbreeding	Inbreeding (%) \pm SD			
Item	Holstein	Jersey			
F _{PED}	7.74 ± 2.22	7.20 ± 2.48	INBREEDING		
F _{ROH_SNP1101} F _{ROH_PLINK}	13.61 ± 3.41 15.64 ± 3.38	21.10 ± 3.40 22.54 ± 3.39			
F _{GRM} f _{PED} f _{SEG}	$31.40 \pm 2.72 \\ 8.33 \pm 3.13 \\ 15.84 \pm 4.48$	$42.62 \pm 2.55 \\ 9.23 \pm 3.69 \\ 23.46 \pm 4.49$	GENOMIC DATA		

□ INBREEDING ASSESSMENT

No positive F values in 161 animals typed at 800K SNP loci when considering them as a single population (preliminary results)

□ PEDIGREE VERIFICATION

PEDIGREE VERIFICATION

Efficienza di un set ridotto di marcatori SNPs come strumento per il controllo genealogico e per l'identificazione individuale nella specie Camelus dromedarius

September 2021

Conference: XIII Convegno Nazionale sulla Biodiversità - Foggia

Elena Ciani · Solutional Generation Service Servi

Lado et al 2020			
	19480 SNPs (Plink & R pruning e editing)	FST Pairwise (Software TRES)	12 SNP 24 SNP 48 SNP 96 SNP
95 Dromedari (19 paesi)			

N LOCI	PNE	PNI*
12	0.54	0.22
24	0.34	0.06
48	0.15	0.007
96	0.029	0.000099

* Assuming one parent putative & the other known

FROM REMOTE EVOLUTIONARY HISTORY TO DOMESTICATION & **POST-DOMESTICATION HISTORY**

Ciani et al. Genetics Selection Evolution (2015) 47:64 DOI 10.1186/s12711-015-0139-z

RESEARCH ARTICLE

Open Access

Genetics

Selection

Elena Ciani^{1*}, Emiliano Lasagna², Mariasilvia D'Andrea³, Ingrid Alloggio¹, Fabio Marroni^{4,5}, Simone Ceccobelli², Juan V. Delgado Bermejo⁶, Francesca M. Sarti², James Kijas⁷, Johannes A. Lenstra⁸, Fabio Pilla³ and the International Sheep Genomics Consortium

AT THE ROMAN TIMES b)

Fig. 1 Synoptic scheme that summarizes the hypothetical origin and relationships between Merino and Merino derived sheep populations at the Roman times (a) and from XV to XVIII century (b) in the Mediterranean area, from XVIII to XX century in Asia (c) and from XIX to XX century in ustralia and New Zealand (d)

Fig. 1 a Schematic representation of the most voted scenario of colonization. The model predicts a first separation between taurine and indicine (13) followed by independent domestication events (tdt and tdi) that took place in the Fertile Crescent and the Indus Valley, respectively. An early non-Podolian taurine migration (tD) occurred before the admixture event between taurine and indicine (ta). This scenario, simulates an admixture event (ta1) between the Balkan and Central Europe Podolian and the South-East Podolian leading to the formation of the Italian Podolian breeds. b A geographic map indicating the presumed migration routes as inferred for Scenario 3. Arrows and dotted arrows indicate the assumed or alternative (Mediterrranean or Danube) migration routes

RESEARCH ARTICLE

Open Access On the origin and diversification of Podolian cattle breeds: testing scenarios of European colonization using genome-wide SNP data

Gabriele Senczuk^{1*}^{1*}, Salvatore Mastrangelo², Paolo Ajmone-Marsan³, Zsolt Becskei⁴, Paolo Colangelo⁵, Licia Colli³, Luca Ferretti⁶, Taki Karsli⁷, Hovirag Lancioni⁸, Emiliano Lasagna⁹, Donata Marletta¹⁰, Christian Persichilli¹, Baldassare Portolano², Francesca M, Sarti⁹, Elena Ciani¹¹ and Fabio Pilla¹

POST-DOMESTICATION HISTORY

TARGET AREAS: ALGERIA AND MOROCCO

DISENTANGLING THE GENETIC ARCHITECTURE OF "MILK" TRAITS

(complex quantitative traits)

STUDY SAMPLE TYPE	PHENOTYPE MEASUREMENT AVAILABILITY	APPROACH	NOTES
POPULATION	NO	SELECTION SIGNATURES	-within pop (homozygosity) -between pops (FST-outlier) - among pops (HAPFLK)
POPULATION	YES	•A PRIORI TARGETED CANDIDATE GENE • GWAS	
FAMILY (PEDIGREE)	YES	QTL MAPPING	

DISENTANGLING THE GENETIC ARCHITECTURE OF "MILK" TRAITS

(complex quantitative traits)

GWAS – Genome-wide Association Studies

scientific reports

OPEN Genomic prediction for growth using a low-density SNP panel in dromedary camels

Morteza Bitaraf Sani^{11≥4}, Javad Zare Harofte¹, Mohammad Hossein Banabazi², Saeid Esmaeilkhanian³, Ali Shafei Naderi¹, Nader Salim⁴, Abbas Teimoori⁴, Ahmad Bitaraf¹, Mohammad Zadehrahmani⁵, Pamela Anna Burger⁶, Vincenzo Landi⁷, Mohammad Silawi⁸, Afsaneh Taghipour Sheshdeh⁸ & Mohammad Ali Faghihi^{8,9}

Growth traits...but not (yet) milk traits: more difficult to be collected (monthly test-day milk records)

Trait	Chromosome	pos	MAF	-log ₁₀ (p-Value)	Candidate gene	
	7	82,483,685	0.09	3.29	ACTESE DDI 32 XECC2	
	7	82,483,675	0.08	3.10	ACTA30, KP132, ARCG2	
	8	72,594,633	0.11	3.81		
	8	72,594,548	0.09	3.77		
	8	72,594,549	0.09	3.77	SERAC1	
Right weight	8	72,594,593	0.13	3.51		
birtir weight	8	72,594,639	0.08	3.12		
	9	22,550,930	0.15	3.47	TBX15	
	11	81,210,420	0.06	3.07	mRNA-hypothetical protein and KAB1271495.1	
	19	10,237,661	0.05	3.21	DNE114 JENII I SDATA2 SNA11	
	19	10,237,641	0.05	3.18	KNF114, IFNL1, SPAIAZ, SNA11	
	34	6,774,561	0.06	3.54	UNKHOWN	
	10	13,892,353	0.06	3.41	UNKHOWN	
	16	34,483,240	0.39	3.38	EFCAB5, NSRP1, Slc6a4	
	12	5711	0.02	3.34	ITGA7, OR6C2	
Gain/day	19	9,631,630	0.17	3.32	RIPOR3, PTPN1, PARD6B, BCAS4, MOCS3	
	14	31,371,259	0.11	3.29		
	14	30,865,065	0.23	3.23	TRAPPC9	
	14	30,854,110	0.37	3.07		
	11	72,356,401	0.30	3.76	EMX2, mRNA-hypothetical protein and KAB1271709.1	
	8	43,104,525	0.30	3.42	FAM184A, MCM9, ASF1	
	19	10,894,226	0.34	3.38	CSE1L, ARFGEF2	
	х	78,141,509	0.43	3.30	TSR2, WNK3	
Body weight	X	78,141,514	0.43	3.30	TSR2, WNK3	
	х	60,452,363	0.08	3.16	LPAR4, RTL3, PEG10	
	Х	62,116,802	0.06	3.12	PBDC1, TRAPPC13	
	4	40,844,257	0.16	3.13	UNKNOWN	
	18	29,958,631	0.06	3.08	DEXI, TSPYLA, CIITA	

 Table 4. Genome-wide association studies (GWAS)-identified significant single-nucleotide polymorphisms (SNPs) (-log p value > 3), associated traits, and candidate genes.

"OMIC" DATA INTEGRATION

The molecular basis of mammary gland development and epithelial differentiation

https://doi.org/10.1016/j.semcdb.2020.09.014

GENOMIC EVALUATION/PREDICTION

scientific reports

OPEN Genomic prediction for growth using a low-density SNP panel in dromedary camels

Morteza Bitaraf Sani^{1⊵4}, Javad Zare Harofte¹, Mohammad Hossein Banabazi², Saeid Esmaeilkhanian³, Ali Shafei Naderi¹, Nader Salim⁴, Abbas Teimoori⁴, Ahmad Bitaraf¹, Mohammad Zadehrahmani⁵, Pamela Anna Burger⁶, Vincenzo Landi⁷, Mohammad Silawi⁸, Afsaneh Taghipour Sheshdeh⁸ & Mohammad Ali Faghihi^{8,9}

GENOMIC EVALUATION/PREDICTION

Figure 8. The accuracy of predicted GEBVs from the 99 SNPs using BGLR package.

MILK TRAITS

MILK TRAIT

MILK YIELD

MILK GROSS COMPOSITION

MILK FATTY ACID PROFILES

MILK PROTEIN PROFILES

MILK SOMATIC CELL COUNT/SCORE

UDDER CONFORMATION TRAITS

LEARN FROM PAST MISTAKES

✓ Negative correlations!!!✓ Genetic erosion!!!

OTHER (NEW) FUNCTIONAL TRAITS:

✓ FERTILITY

✓ HEALTH (mastitis, ketosis..)

✓ ENVIRONMENTAL IMPACT (climate resilient cattle, low-methane emissions..)

ACROSS "BREEDS" EVALUATION: INTERNATIONAL EFFORTS

Multiple Country and Breed Genomic Prediction of Tick Resistance in Beef Cattle

Fernando Flores Cardoso^{1*}, Oswald Matika², Appolinaire Djikeng³, Ntanganedzeni Mapholi⁴, Heather M. Burrow⁵, Marcos Jun Iti Yokoo¹, Gabriel Soares Campos¹, Claudia Cristina Gulias-Gomes¹, Valentina Riggio^{2,3}, Ricardo Pong-Wong², Bailey Engle⁶, Laercio Porto-Neto⁷, Azwihangwisi Maiwashe⁸ and Ben J. Hayes⁶

OPEN CHALLENGES

MILK PHENOTYPING IS COMPLEX (although some techniques are automated. Validation is needed for the dromedary species)

LOWER HEREDITABILITY THAN MEAT TRAITS (lower expected genetic progress, not at the beginning but in the long-term)

CAVEATS:

- •Negative correlations with fertility and adaptive traits (learn from past mistakes)
- Poor genetic variability in this species = poor genetic gain
- Further genetic erosion: fitness and adaptation???

WHERE WE ARE?

STATUS	STEP
YES	REFERENCE GENOME ANNOTATED & CHROMOSOMES
YES	RESEQUENCING VIA WGS
YES	RESEQUENCING VIA GBS
YES (more expected)	EVOLUTIONARY/STRUCTURAL GENOMICS
YES (more expected)	COMPARATIVE GENOMICS
YES (more expected)	IN SILICO FUNCTIONAL PREDICTION
YES	SNP ARRAY - MEDIUM DENSITY
COMING SOON	SNP ARRAY – HIGH DENSITY
YES (more expected)	GENOTYPE-PHENOTYPE ASSOCIATION STUDIES
NO	ROUTINE GENOTYPING
NO	ROUTINE PHENOTYPING
COMING SOON	SNP-BASED PATERNITY TESTS
NO	MOLECULAR-ASSISTED BREEDING & SELECTION
NO	MOLECULAR-BASED MILK ADULTERATION ASSAYS

DO WE REALLY WANT TO TRANSFORM A SHE-CAMEL INTO A HIGH-PRODUCING DAIRY COW?

