

Differential splicing: an effective way to expand molecular diversity of caseins and their ability to generate bioactive peptides

Patrice MARTIN¹, Alma RYSKALIYEVA¹, Guy MIRANDA¹, Zuzana KRUPOVA², Claudia BEVILACQUA¹, Bernard FAYE⁴, Gaukhar KONUSPAYEVA⁵ and Christine LEROUX³

¹INRA, UMR GABI, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
 ²Excilone, F-78990, Elancourt, France
 ³INRA, UMR1213 Herbivores, F-63122, Saint Genès Champanelle, France
 ⁴CIRAD, UMR SELMET, Montpellier, France
 ⁵AI-Farabi Kazakh State National University, Biology department, Almaty, Kazakhstan

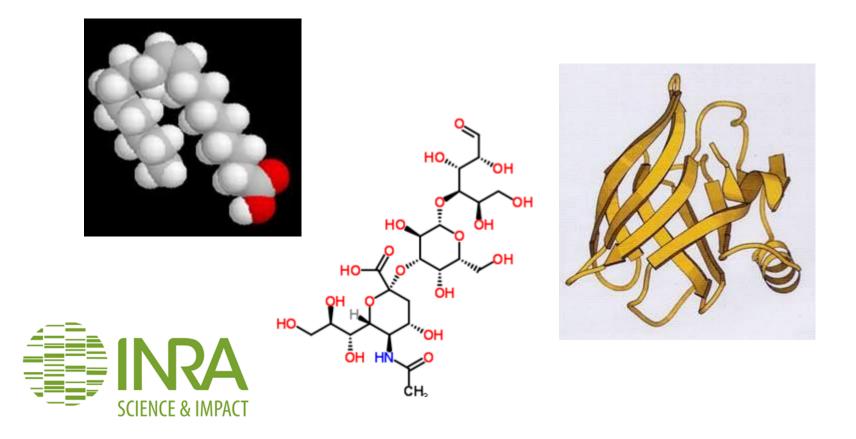
Corresponding authors emails: <u>pdlmartin147@gmail.com</u> <u>christine.leroux@inrae.fr</u>

Symposium on Camel Milk - Montpellier, November 15 -16, 2021

Milk: a complete and complex food

"Designed" to fulfil specific requirements and provide optimal growth and development to mammalian offsprings

Constant


physical

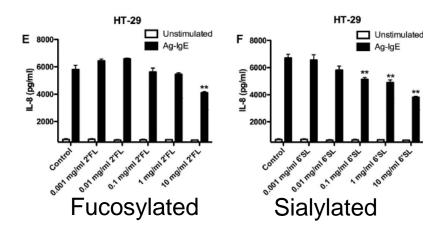
aspect

Milk is much more than a complete food

Milk is a source of bioactive components, including long chain fatty acids, complex oligosaccharides and proteins

HMOs: the third most abundant solid component of human milk

- 10 g/L in mature milk after lactose (70 g/L) and lipids (40 g/L)
- Confer protection on the newborn whose immune system is functionnaly immature
- Prebiotics, promoting growth of beneficial bacteria,
- Protect against pathogenic infection


SCIENCE & IMPAC

Stimulate maturation of the immune system

Human Milk Oligosaccharides Attenuate Antigen–Antibody Complex Induced Chemokine Release from Human Intestinal Epithelial Cell Lines

Sehrish Zehra, Ibrahim Khambati, Megan Vierhout, M. Firoz Mian, Rachael Buck, and Paul Forsythe 🔟

Vol. 83, Nr. 2, 2018 • Journal of Food Science

Fucosylated 40%

Sialylated 13%

Oligosacharrides in camel milk

J. Dairy Sci. 93:5572–5587 doi:10.3168/jds.2010-3151 © American Dairy Science Association[®], 2010.

Chemical characterization of the oligosaccharides in Bactrian camel (*Camelus bactrianus*) milk and colostrum

K. Fukuda,* A. Yamamoto,† K. Ganzorig,* J. Khuukhenbaatar,‡ A. Senda,* T. Saito,§ and T. Urashima*¹

*Department of Animal and Food Hygiene, and

†Department of Bioresource Chemistry, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555 Japan ‡Food and Agricultural Division, Dundgovi aimag, Mongolia

§Graduate School of Agriculture, Tohoku University, Tsutsumidori-Amamiya machi 1-1, Aoba-Ku, Sendai, Miyagi, 981-8555 Japan

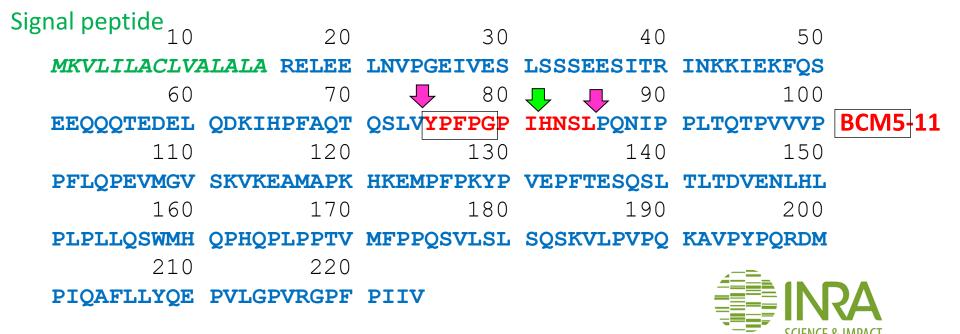
J. Dairy Sci. 103:72–86 https://doi.org/10.3168/jds.2019-16710 © American Dairy Science Association[®], 2020.

Electrospray ionization mass spectrometry characterization of ubiquitous minor lipids and oligosaccharides in milk of the camel (*Camelus dromedarius*) and their inhibition of oxidative stress in human plasma

Arafa I. Hamed,^{1,2,3} Ridha Ben Said,^{2,4} Bogdan Kontek,⁵ Abdullah S. Al-Ayed,² Mariusz Kowalczyk,³ Jaroslaw Moldoch,³ Wieslaw Oleszek,³ Anna Stochmal,³ and Beata Olas⁵* Aria Stochmal, ³ Aria Stochmal, ³ and Beata Olas⁵* Aria Stochmal, ³ Aria Stochmal, ³ and Beata Olas⁵* Aria Stochmal, ³ Aria Stochmal, ³ and Beata Olas⁵* Aria Stochmal, ³ Aria Stochmal, ³ Aria Stochmal, ³ and Beata Olas⁵* Aria Stochmal, ³ Aria Stochmal, ³

¹Phytochemistry Laboratory, Department of Botany, Faculty of Science, Aswan University, Aswan 81528, Egypt ²Department of Chemistry, College of Science & Arts at Al-Rass, Qassim University, Al-Rass 58892 Buraidah, Saudi Arabia ³Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland

⁴Unitè Physico-Chimie des Materiauxa l'Etat Condense UR11ES19, Departement de Chimie, Facultè des Sciences de Tunis Universitè, Tunis El Manar Campus Universitaire, MANAR II, 2092 Tunis, Tunisia

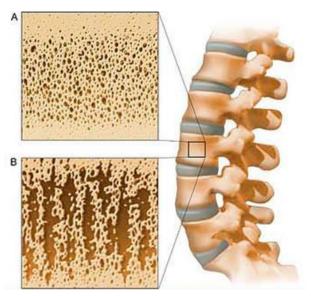

⁵Department of General Biochemistry, Institute of Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland

Milk proteins: a source of biologically active peptides

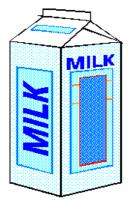
β-casomorphins (BCMs), derived from β-casein, first identified in bovine milk (Brantl & Teschemacher, 1979)

recently shown to occur naturally in breast milk (Enjapoori *et al.*, 2019)

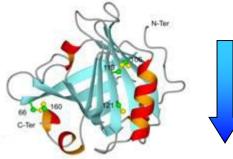
Therapeutic effects of milk-derived peptides in several health disorders



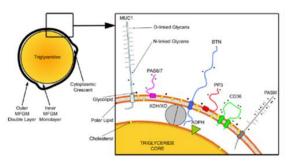
Hypertension cardiovascular disease obesity osteoporosis dental caries gastrointestinal diseases ageing, ... and others


Milk proteins

Soluble fraction


(Whey proteins)

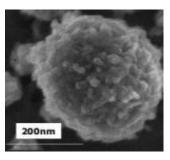
20%


Colloidal fraction

Milk Fat Globule Membrane

> 80 proteins (<1%)

(Butyrophilin, adipophilin, xanthine oxidase, FABP, lactadherin, ...)



(Dewettinck et al., 2008)

Caseins

(random coiled, organised in Micelles)

(Dalgleish et al., 2004)

β-lactoglobulin α-lactalbumin Lactoferrin, ...

(Globular tertiary structure)

The bulk of the protein fraction in milk corresponds to the products of only 6 genes

Coding for: 4 caseins (α s1, α s2, β and κ) 2 main whey proteins (β -lactoglobulin & α -lactalbumin)

95% of the protein fraction in cattle

Several tens or even hundreds of proteins in the remaining 5%

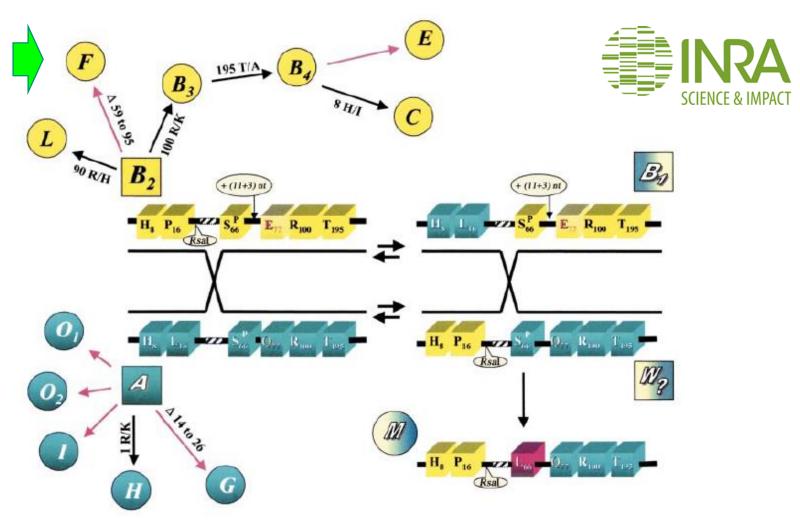
A fairly simple system, regarding the main milk proteins, but this milk proteome is much more complex with:

- genetic variants
- low-abundance gene products arising from differential splicing
- isoforms due to **post-translational modifications** such as **phosphorylation**, glycosylation and proteolytic processing.

up to 100 molecules, derived from the 6 major milk proteins

Miranda et al., 2020

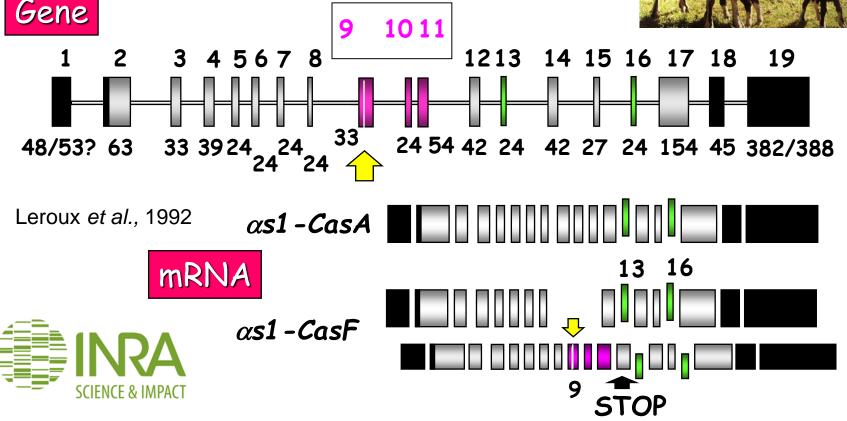
Food Chemistry: X 5 (2020) 100080


Genetic variants of the main milk proteins

CSN1S1 (αs1-casein)	CSN1S2 (αs2-casein)	CSN2 (β-casein)	CSN3 (к-casein)	β-lactoglobulin	α -lactalbumin
9 variants A to I	4 variants A to D	12 variants A ¹ , A ² , A ³ , B to J	15 variants A, B, B2, C to E (F1,F2,G1, G2 and H to L)	13 variants A, B, B*, C, D and Dr, E to J and W	4 variants A to D
15 variants (+ 3 null alleles)	7 variants (+1 null allele)	6 variants (+ 3 null alleles)	17 variants	2 putative variants (uncharacterized so far)	2 Variants
10 variants	8 variants	5 variants	3 variants	3 variants	2 variants

from Martin *et al*. (2013), Selvaggi *et al*. (2014a, 2014b)

Genetic polymorphisms at the CSN1S1 locus in the goat species

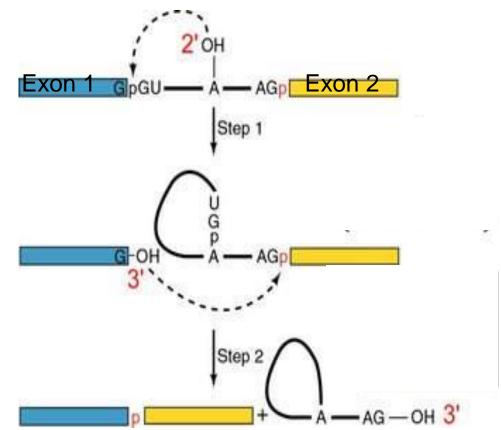

Bevilacqua et al., 2002

Allele F: A "frame shift" mutation

a multiplicity of transcripts (proteins)

a reduced expression

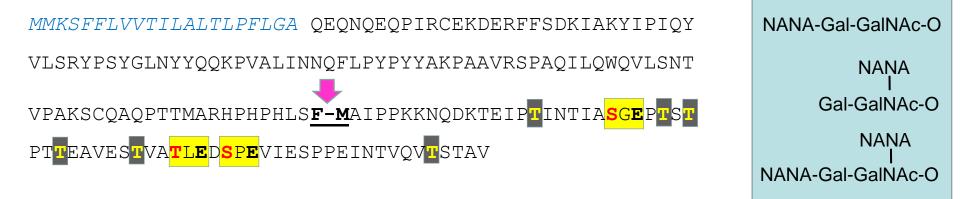
 α_{s1} - CasF \Rightarrow 9 different transcripts as many different peptide chains



Occurrence of splicing variants due to cryptic splice site usage and exon skipping

Exon skipping (ES): loss of exon during the course of pre-mRNA maturation (assembly of exonic sequences and removal of introns)

Cryptic splice site usage (CSS): loss or gain of nucleotides (intron or exon sequences)


Quality control mechanisms

Events first reported in small ruminants: CSN1S in the goat species

Post-translational modifications contribute to increase molecular diversity

Glycosylation: κ -casein (O-glycosylation on up to 6 Thr residues)

Phosphorylation: α s2-casein (theoretically up to16P on Ser/Thr residues)

MKFFIFTCLLAVALA KN<mark>TME</mark>HV<mark>SSSEE</mark>SII<mark>SQE</mark>TYKQEKNMAINP<mark>SKE</mark>NL

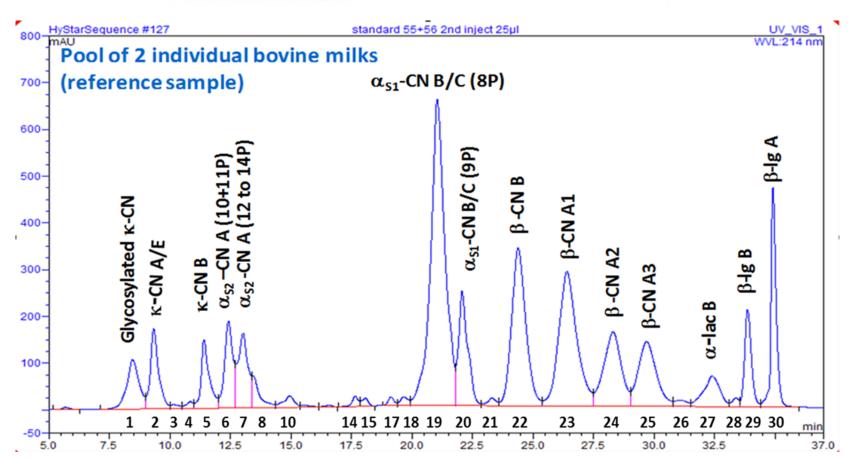
CSTFCKEVVRNANEEEYSIG<mark>SSSEE</mark>SAEVA<mark>TEE</mark>VKITVDDKHYQKALNEIN

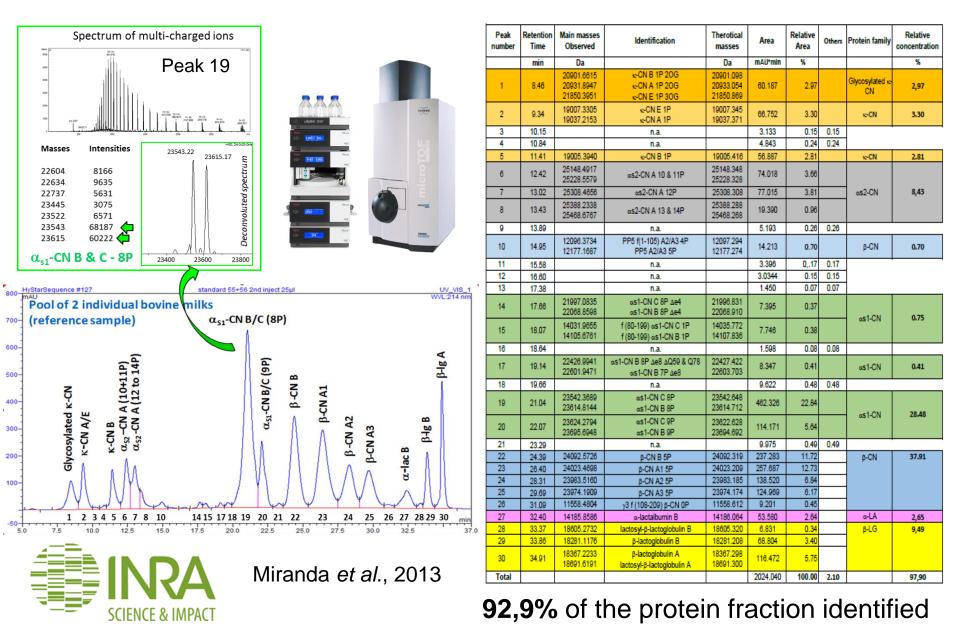
QFYQKFPQYLQYLYQGPIVLNPWDQVKRNAVPITPTLNREQL<mark>STSEE</mark>NSKK

TVDME<mark>STE</mark>VFTKKTKL<mark>TEE</mark>EKNRLNFLKKISQRYQKFALPQYLKTVYQHQK

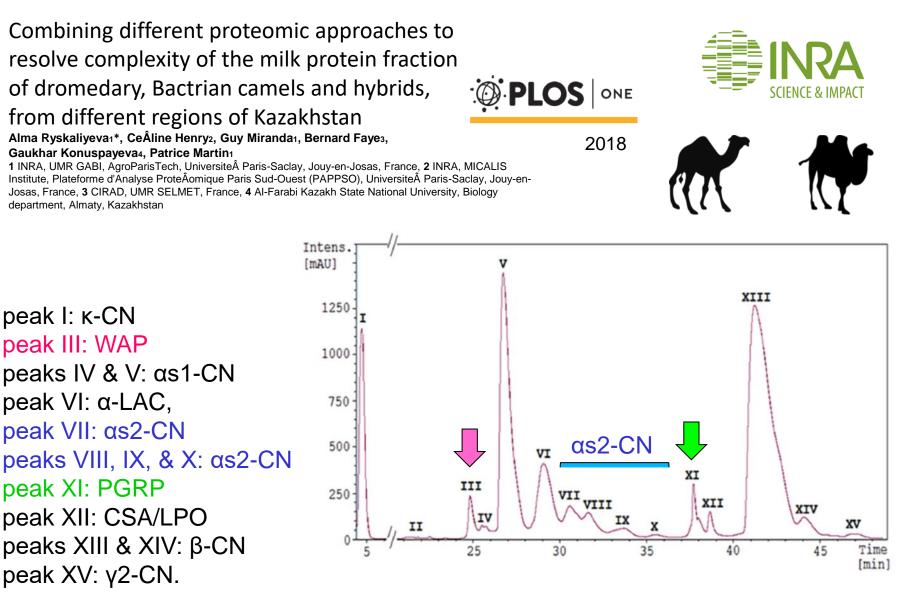
AMKPWIQPKTKVIPYVRYL

LC-MS profiling of bovine milk proteins


FOOD CHEMISTRY: Ø


An improved LC–MS method to profile molecular diversity and quantify the six main bovine milk proteins, including genetic and splicing variants as well as post-translationally modified isoforms

Guy Miranda^{a,*}, Leonardo Bianchi^a, Zuzana Krupova^{a,1}, Philippe Trossat^b, Patrice Martin^{a,*}


^a UMR GABI, INRAE, AgroPartsTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France ^b ACTALIA, pôle expertise analytique, 39801 Poligny, France

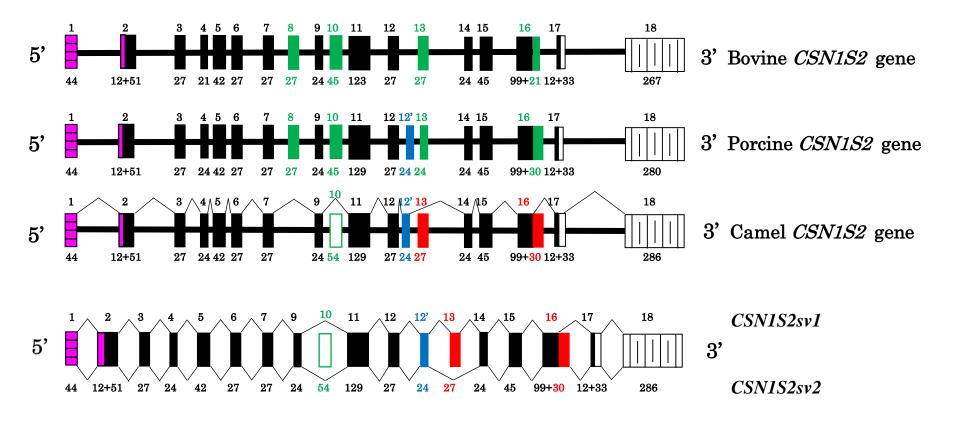
LC-MS profiling of bovine milk proteins

LC-MS profiling of Camel milk proteins

	Peak	Ret.Time, min	Observed M ₁₇ Da	TheoreticalM _r , Da	Protein description	UniProt/ NCBI GenBank Accession number	Intensity
	I	4.50	21,157	21,158	κ-CN A, 1P, (GaN-Ga-SA2)x3*, pyro-E		1,361
			21,184	21,182	κ-CN B, 0P, (GaN-Ga)x3 + (GaN-Ga-SA2)x2**, pyro-E		5,810
	п	18.61	18,210	18,210	к-CN B, 0Р ?	L0P304	161
			18,236	18,235	κ-CN A, 0P, pyro-E	P79139	72
	Ш	24.32	12,564	12,564	WAP, 0P	P09837	1,756
			12,644	12,644	WAP, 1P		1,575
	IV	24.97	23,878	23,878	α _{s1} -CN A—short isoform (Δex 16 and Δex 13'), 4P		242
	v	26.23	24,547	24,547	α_{s1} -CN C -short isoform (Δ ex 16), 5P, splice variant (Δ Q83)		4,885
			24,627	24,627	α_{s1} -CN C—short isoform (Δ ex 16), 6P, splice variant (Δ Q83		21,606
			24,707	24,707	α_{s1} -CN C—short isoform (Δ ex 16), 7P, splice variant (Δ Q83)		6,990
			24,675	24,675	α_{s1} -CN C—short isoform (Δ ex 16), 5P		9,441
			24,755	24,755	α _{s1} -CN C—short isoform (Δex 16), 6P	K7DXB9	47,392
			24,835	24,835	α_{s1} -CN C—short isoform (Δ ex 16), 7P		7,046
			24,689	24,689	α_{s1} -CN A—short isoform (Δ ex 16), 5P		9,748
			24,768	24,769	α _{s1} -CN A—short isoform (Δex 16), 6P	097943-2	50,634
			24,849	24,849	α _{s1} -CN A—short isoform (Δex 16), 7P		6,909
	VI	28.53	14,430	14,430	α-LAC	P00710	17,797
			22,939	n/a	Uncharacterized protein 1 (UP1)	n/a***	2,701
			23,020	n/a	UP1+80Da	n/a	2,489
			23,099	n/a	UP1+160Da	n/a	1,079
			25,646	25,645	α _{s1} -CN C, 6P, splice variant (ΔQ83)		3,501
			25,693	25,693	α _{S1} -CN C, 5P		564
			25,773	25,773	α _{s1} -CN C, 6P		7,880
_			25,787	25,787	α _{s1} -CN A, 6P	097943-1	3,472
	VII	30.05	21,825	21,826	α _{s2} -CN, 7P		552
		21,906 21,906 α_{s2} -CN, 8P 21,984 21,986 α_{s2} -CN, 9P		09794	5,242		
			21,984		α _{s2} -CN, 9P		403
		21.11	23,178	n/a	UP1+240Da	n/a	1,256
	VIII	31.11	21,986 22,066	21,986	α_{s2} -CN, 9P	O97944	356 4,790
	IX	33.18	22,066	22,066	α _{s2} -CN, 10P		148
	IA	55.16	22,066	22,000	α_{s2} -CN, 10P		1,964
	X	35.05	22,143	22,146	α _{s2} -CN, 11P α _{s2} -CN, 12P		894
	~	55.05	23,046	n/a	Uncharacterized protein 2 (UP2)	n/a	231
	X	37.16	19,143	19,143	PGRP	Q9GK12	7,207
	A	57.10	23,206			n/a	1,592
			23,286	n/a n/a	UP2+240Da	n/a	735
	XII	38.09	66,481	66,477	CSA?	XP_010981066.1	1,096
				66,491	LPO ?	Q9GJW6	
				CSA ? LPO?		2,663	
			67,342	n/a	CSA ? LPO?		1.010
	XIII				2,073		
		24,793 24,792 β-CN A, 2P		β-CN A, 2P		5,469	
		24,825 24,825 β-CN A, 4P, splice variant (ΔQ29)		β -CN A, 4P, splice variant (Δ Q29)		9,586	
			24,873	24,872	β-CN A, 3P		10,177
			24,953	24,953	β-CN A, 4P	A0A077SL35	84,494
			24,842	24,842	β-CN B, 4P, splice variant (ΔQ29)		10,029
			24,891	24,890	β-CN B, 3P		10,365
			24,970	24,971	β-CN B, 4P	Q9TVD0	87,973
	XIV	43.71	23,878	23,878	β -CN A-short isoform (Δ 946 Da), 4P, splice variant (Δ Q29)		707
			23,963	23,958	β -CN A-short isoform (Δ 946 Da), 5P, splice variant (Δ Q29)		244
			23,929	23,926	β-CN A-short isoform (Δ946 Da), 3P		438
	24,006 24,006 β-CN A-short isoform (Δ946 Da), 4P				9,026		
			00.005	22.005			(35

Mass Specrometry Analysis Molecular masses obtained after deconvolution of multi-charged ions spectra

α S2-caseins



Peak Ret.Time, min		M _p Da		Protein description	UniProt/ NCBI GenBank Accession number	Intensity
		22,939	n/a	Uncharacterized protein 1 (UP1)	n/a***	2,701
		23,020	n/a	UP1+80Da	n/a	2,489
		23,099	n/a	UP1+160Da	n/a	1,079
		25,646	25,645	α_{s1} -CN C, 6P, splice variant (Δ Q83)		3,501
		25,693	25,693	α _{S1} -CN C, 5P		564
		25,773	25,773	α _{s1} -CN C, 6P		7,880
		25,787	25,787	α _{s1} -CN A, 6P	097943-1	3,472
VII	30.05	21,825	21,826	α _{s2} -CN, 7P		552
		21,906	21,906	α _{s2} -CN, 8P	O9794	5,242
		21,984	21,986	α _{s2} -CN, 9P		403
		23,178	n/a	UP1+240Da	n/a	1,256
VIII	31.11	21,986	21,986	α _{s2} -CN, 9P	O97944	356
		22,066	22,066	α _{s2} -CN, 10P		4,790
IX	33.18	22,066	22,066	α _{s2} -CN, 10P		148
		22,145	22,146	α _{s2} -CN, 11P		1,964
Х	35.05	22,226	22,226	α _{s2} -CN, 12P		894
		23,046	n/a	Uncharacterized protein 2 (UP2)	n/a	231
Х	37.16	19,143	19,143	PGRP	Q9GK12	7,207
		23,206	n/a	UP2+160Da	n/a	1,592
		23,286	n/a	UP2+240Da	n/a	735

αS2-caseins

CSN1S2 in camels

Splicing isoforms impacts the C-terminal sequence of camel α_{s2} -casein

EXON 5

EXON 6

EXON 7

Ryskaliyeva et al., 2019

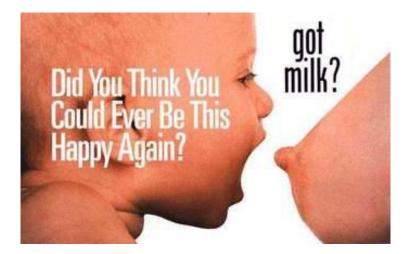
				211011 0	Errorr 0		
BOVINE LAMA CAMEL CAMEL SV1 CAMEL SV2 CAMEL SV3 PIG	MKFFIFTCLLAVALA KN MKFFIFTCLLAVALA KH MKFFIFTCLLAVVLA KH MKFFIFTCLLAVVLA KH MKFFIFTCLLAVVLA KH MKFFIFTCLLAVVLA KH	EMDQGSSSE ES EMDQGSSSE ES EMDQGSSSE ES EMDQGSSSE ES EMDQGSSSE ES	SINVSQQ K SINVSQQ K SINVSQQ K SINVSQQ K SINVSQQ K	YKQEKNMAINPSK LKQVKKVAIHPSK FKQVKKVAIHPSK FKQVKKVAIHPSK FKQVKKVAIHPSK FKQVKKVAIHPSK YKQEKNVINHPSK	ENLCSTFCK EDICSTFCE EDICSTFCE EDICSTFCE EDICSTFCE EDICSTFCE EDICATSCE	EVVRNANEE EAVRNIKEV EAVRNIKEV EAVRNIKEV EAVRNIKEV EAVRNIKEV	50 51 51 51 51 51 51 51
	EXON 8 EXON 9	EXON 10		EXON 11			
BOVINE	EYSIGSSSE ESAEVATE	EVKITVDDKHYC	KAL NEIN	OFYOKFPOYLOYI	YQGPIVLNPW	DQVKRNAVPIT	PTL
LAMA	ESVEVPTE		NKIS	QFYQKWKFLQYLQAI	HQGQIVMNPW	DQGKTMVYPFI	PTV
CAMEL	ESAEVPTE		NKIS	QFYQKWKFLQYLQAI	HQGQIVMNPW	DQGKTRAYPFI	PTV
CAMEL SV1	ESAEVPTE		NKIS	QFYQKWKFLQYLQAI	HQGQIVMNPW	DQGKTRAYPFI	PTV
CAMEL SV2	ESAEVPTE		NKIS	QFYQKWKFLQYLQAI	HQGQIVMNPW	DQGKTRAYPFI	PTV
CAMEL SV3	ESAEVPTE		NKIS	QFYQKWKFLQYLQAI	HQGQIVMNPW	DQGKTRAYPFI	PTV
PIG	GYASSSSSE ESVDIPAE	NVKVTVEDKHYI	KQL EKIS	QFYQKFPQYLQAI	YQAQIVMNPW	DQTKTSAYPFI	PTV
	EXON 12 EXON	12' EXON 13	EXON 14	EXON 15			
BOVINE	NREQLSTSE	EROTATI V DES	ESTEVFTK			ant	: I-D
LAMA	NTEQLSISE ESTEVE		ESTEVFTK				
CAMEL	NTEQLSISE ESTEVE		ESTEVFTK	KTELTEEEKDHQR		ant	:Ih\
CAMEL SV1	NTEQLSISE ESTEVE		ESTEVFTK	KTELTEEEKDHQ			
CAMEL SV2	NTEQLSISE ESTEVE		ESTEVFTK	KTELTEEEKDHQ			
CAMEL SV3	NTEQLSISE ESTEVE		ESTEVFTK	~			
PIG	IQSGEELSTSE EPVSSS	QE ENT-KTVDM	ESMEEFTK	KTELTEEEKNRIN	(FL 174		
		EXON 16		EXON 17		Administi	
DATITUD						peptide p	rev
BOVINE	KKISQRYQKFALPQYLKTV					Alzheime	
LAMA	NKIYQYYQTFLWPEYLKTV			- RYF 187		Aizneime	i uis
CAMEL CVI	NKIYQYYQTFLWPEYLKTV					Li-Juan Min ^{1©} . Yoo	dai Kab
CAMEL SV1 CAMEL SV2	NKIYQYYQTFLWPEYLKTV NKIYQYYQTFLWPEYLKTV					Koji Yamauchi ² , F	
CAMEL SVZ CAMEL SV3	NKIYOYYOTFLWPEYLKT		-			•	
PIG	NKIKOYYOKFTWPOYIKT		<i>n</i>			I Department of Mole Medicine, Shitsukawa	
5.10	WUTUNII NUTUNI NUTUNI	UNVARIA MARTIN	TUPIQITEN.	L RIF ZZU			

EXON 4

EXON 3

EXON 2

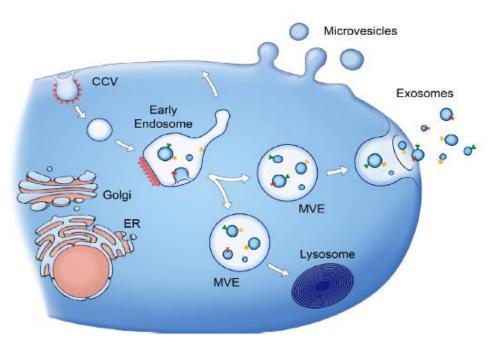
anti-bacterial and antihypertensive activities


Administration of bovine casein-derived peptide prevents cognitive decline in Alzheimer disease model mice

Li-Juan Min^{1e}, Yodai Kobayashi^{2e}, Masaki Mogi¹*, Kana Tsukuda¹, Akio Yamada², Koji Yamauchi², Fumiaki Abe², Jun Iwanami¹, Jin-Zhong Xiao², Masatsugu Horiuchi¹

1 Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, Japan, 2 Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan

PLOS ONE | DOI:10.1371/journal.pone.0171515 February 3, 2017

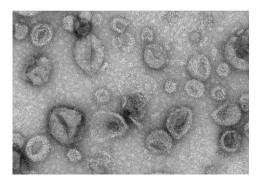

Beside its unique nutritional content breast milk also contains extracellular vesicles and live cells from the mother

Multi Vesicular Bodies released into the extracellular medium by fusion with the cell plasma membrane

Extracellular vesicles 30 and 100 nm

CAMEL MILK-DERIVED EVs: a SOURCE of MILK PROTEINS SO FAR UNEXPLORED

Milk-derived Exosomes and microRNA


A Immunology

This information is current as of September 23, 2019.

Exosomes with Immune Modulatory Features Are Present in Human Breast Milk

Charlotte Admyre, Sara M. Johansson, Khaleda Rahman Qazi, Jan-Jonas Filén, Riitta Lahesmaa, Mikael Norman, Etienne P. A. Neve, Annika Scheynius and Susanne Gabrielsson

J Immunol 2007; 179:1969-1978; ;

Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs

Taketoshi Hata^a, Kosuke Murakami^b, Hajime Nakatani^b, Yasunari Yamamoto^c, Tsukasa Matsuda^b. Naohito Aoki^{a,*}

^a Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan ^bDepartment of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan ^bMie Prefecture livestock Research Institute, Ureshino, Matsusaka, Mie 515-2324, Japan

Biochemical and Biophysical Research Communications 396 (2010) 528-533

Bodo C. Melnik, MD, Associate Professor, Dermatologist ^{a, *}, Gerd Schmitz, MD, Professor, Specialist for Laboratory and Transfusion Medicine ^b

MicroRNAs: Milk's epigenetic regulators

^a Department of Dermatology, Environmental Medicine, and Health Theory, University of Osnabrück, Germany

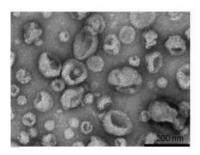
^b Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany

Best Practice & Research Clinical Endocrinology & Metabolism 31 (2017) 427-442

Human Milk MicroRNAs/Exosomes: Composition and Biological Effects

Bo Lönnerdal

Donovan SM, German JB, Lönnerdal B, Lucas A (eds): Human Milk: Composition, Clinical Benefits and Future Opportunities. Nestlé Nutr Inst Workshop Ser, vol 90, pp 83–92, (DOI: 10.1159/000490297) Nestlé Nutrition Institute, Switzerland/S. Karger AG., Basel, © 2019


Extracellular vesicles in camel milk

Comprehensive proteomic analysis of camel milk-derived extracellular vesicles

^{1*}A. Ryskaliyeva, ²Z. Krupova, ³C. Henry, ⁴B. Faye, ⁵G. Konuspayeva, ¹P. Martin

 ¹INRA, UMR GABI, AgroParisTech, Université Paris-Saclay, France
 ²Excilone, France
 ³INRA, MICALIS Institute, Plateforme d'Analyse Protéomique Paris Sud-Ouest, Université Paris-Saclay, France

⁴CIRAD, UMR SELMET, France ⁵RPE Co Antigen Ltd., Kazakhstan

International Journal of Biology and Chemistry 12, Nº 2, 93 (2019)

	Contents lists available at ScienceDirect	
	Biomedicine & Pharmacotherapy	
ELSEVIER	Biomedicine & Pharmacotherapy 143 (2021) 112220	biomedicine PHARMACOTHERAPY

Therapeutic potential of camel milk exosomes against HepaRG cells with potent apoptotic, anti-inflammatory, and anti-angiogenesis effects for colostrum exosomes

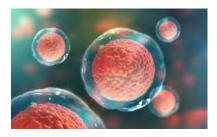
Azza M. El-kattawy^a, Ola Algezawy^a, Mohammad Y. Alfaifi^b, Enas A. Noseer^c, Yousef M. Hawsawi^d,^e, Othman R. Alzahrani^{f,g}, Abdulrahman Algarni^h, Khaled A. Kahilo^a, Mohammed A. El-Magd^{i,*,1}

^a Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt

- ^b Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- ^e Department of Biochemistry, Faculty of Veterinary Medicine, Aswan University, Egypt
- ^d Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia
 ^e College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- ⁶ College of Medicine, Al-Paisal University, P.O. Box 50927, Riyaan 11533, Saudi Arabia
 ⁶ Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- ⁸ Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- ^h Department of Biomedical Science, the Northern Border University, P.O.Box 1321, Arar, Saudi Arabia
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt

Therapeutic Effect of Camel Milk and Its Exosomes on MCF7 Cells In Vitro an2018 Vivo

Integrative Cancer Therapies


Abdelnaser A. Badawy, PhD^{1,2}, Mohammed A. El-Magd, PhD³, and Sana A. AlSadrah, PhD⁴

¹Department of Biochemistry, Faculty of Medicin, Northern Border University, Arar, Saudi Arabia ²Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt ³Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt ⁴Department of Preventive Medicine, Governmental Hospital Khobar,

Health Centers in Khobar, Ministry of Health, Saudi Arabia

Breast milk stem cells transfer to offspring

SCIENTIFIC REPORTS SCIENTIFIC REPORTS (2018) 8:14289 [DOI:10.1038/541598-018-32715-5 Transfer and Integration of Breast Milk Stem Cells to the Brain of

Milk SC reach the brain where they turn into functioning cells

WILEY

Mehmet Şerif Aydın¹, Esra Nur Yiğit¹, Emre Vatandaşlar¹, Ender Erdoğan² & Gürkan Öztürk^{1,3}

REVIEW ARTICLE

Suckling Pups

Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant

```
Jean-Pierre Molès<sup>1</sup> | Edouard Tuaillon<sup>1,2</sup> | Chipepo Kankasa<sup>3</sup> | Anne-Sophie
Bedin<sup>1</sup> | Nicolas Nagot<sup>1,2</sup> | Arnaud Marchant<sup>4</sup> | Joann M. McDermid<sup>5</sup> | Philippe Van de
Perre<sup>1,2</sup>
```

Breast-milk: the postnatal maternal blood through which a multitude of active soluble and cellular factors are delivered to the offspring

Conclusions

Milk has to be considered as a sophisticated nutrient but also as a **communication system delivering** a multitude of active soluble and cellular factors orchestrating early development of the offspring

Differential splicing is an effective way to **increase** molecular diversity and possibly **the repertoire of bioactive peptides** encrypted in milk proteins

Acknowledgements

C. BEVILACQUA (IR)

A. RYSKALIYEVA (PhD)

idge (genomics)

G. KONUSPAYRVA

B. FAYE

G. MIRANDA (IR)

C. LEROUX (DR)

Z. KRUPOVA (IR)

SCIENCE & IMPACT